Drug information

Audio
Download files:
Pronounce:
Other Names
HIVconsv vaccine vectored by ChAdV63
Drug Class
Therapeutic Vaccines
Organization
University of Oxford
Phase of Development

ChAdV63.HIVconsv is in Phase 2 development as a therapeutic vaccine. (ChAdV63.HIVconsv has also been studied for HIV prevention.)

(Compound details obtained from Treatment Action Group website1 and ClinicalTrials.gov2)

 

What is ChAdV63.HIVconsv?What is ChAdV63.HIVconsv?

What is ChAdV63.HIVconsv?

ChAdV63.HIVconsv is an investigational vaccine that is being studied as a possible strategy to treat people with HIV.1 ChAdV63.HIVconsv belongs to a group of HIV vaccines called therapeutic HIV vaccines.

To learn how investigational vaccines and drugs are tested during clinical trials, read the HIVinfo What is an Investigational HIV Drug? and HIV and AIDS Clinical Trials fact sheets.

How do therapeutic HIV vaccines work?How do therapeutic HIV vaccines work?

How do therapeutic HIV vaccines work?

A therapeutic HIV vaccine is a type of vaccine that’s designed to improve the body’s immune response to HIV in a person living with HIV.3 Therapeutic vaccines may be able to reduce the amount of HIV in the body and help keep HIV at undetectable levels without the need for the regular use of antiretroviral therapy (ART).4 To learn more, read the HIVinfo What is a Therapeutic HIV Vaccine? fact sheet.

There are several types of therapeutic vaccines that are currently being studied to treat HIV. ChAdV63.HIVconsv belongs to a group of vaccines called viral vector vaccines.1 This type of vaccine delivers pieces of HIV’s DNA into the body’s cells. The body then uses this genetic information to produce an immune system response that can fight the virus.5

In addition to being studied as a therapeutic HIV vaccine, ChAdV63.HIVconsv has also been investigated to see if it can prevent HIV infection in people who do not have the virus.2,6,7 This record focuses on the study of ChAdV63.HIVconsv as a therapeutic vaccine.

Select clinical trials of ChAdV63.HIVconsvSelect clinical trials of ChAdV63.HIVconsv

Select clinical trials of ChAdV63.HIVconsv

Study Names: (1) BCN01; NCT01712425 and (2) BCN02-Romi; NCT02616874

Phase: 1
Status: BCN01 and BCN02-Romi have both been completed.
Location: Spain
Purpose:

  • The purpose of the BCN01 study was to (1) evaluate the safety of both the ChAdV63.HIVconsv vaccine and another investigational therapeutic HIV vaccine called MVA.HIVconsv, and (2) investigate whether these vaccines could produce an immune response in people with recently diagnosed HIV infection who had viral suppression on ART.
  • The purpose of the BCN02-Romi study was to evaluate booster doses of MVA.HIVconsv in participants who had completed the BCN01 trial. (Booster doses are additional doses of a vaccine given after the first dose or after the first series of doses to help sustain or increase the immune response.) MVA.HIVconsv was administered in combination with an investigational latency-reversing agent called romidepsin. The study looked at whether this combination of treatments could reduce the size of the latent HIV reservoir and control viral rebound during an analytical treatment interruption of ART.8,9

Selected Study Results: Results from the BCN01 trial published in EClinicalMedicine (2019) showed that the ChAdV63.HIVconsv and MVA.HIVconsv vaccines were safe, with most side effects being mild or moderate in severity. The vaccine regimen demonstrated strong HIV-specific immunogenicity and refocused immune cell responses against highly conserved regions of HIV. (Highly conserved regions of HIV are parts of the virus that change little across most strains.)10 BCN02 trial results published in Frontiers in Immunology (2020) showed that the administration of MVA.HIVconsv booster doses and romidepsin was generally safe; however, one participant experienced a serious side effect that was possibly related to romidepsin. The combined intervention resulted in only a modest reduction in the size of the latent HIV reservoir.11


Study Names: RIVER; NCT02336074

Phase: 2
Status: This study has been completed.
Location: United Kingdom
Purpose: The purpose of this study was to determine whether using a combination of ART, the ChAdV63.HIVconsv and MVA.HIVconsv vaccines, and the investigational latency-reversing agent vorinostat, could lead to a greater reduction in the size of the latent HIV reservoir than using ART alone.12
Selected Study Results: Results presented at AIDS 2018 and published in Lancet (2020) showed that the kick and kill strategyof ART plus the ChAdV63.HIVconsv and MVA.HIVconsv vaccines plus vorinostat produced no significant benefit in reducing the latent HIV reservoir as compared to ART alone.13,14
Additional Published Material:

For more details on the studies listed above, see the Health Professional version of this drug summary.

What side effects might ChAdV63.HIVconsv cause?What side effects might ChAdV63.HIVconsv cause?

What side effects might ChAdV63.HIVconsv cause?

One goal of HIV research is to identify new drugs that have fewer side effects. The following side effects were observed in some of the studies of ChAdV63.HIVconsv listed above.

BCN01 (NCT01712425)

In this Phase 1 study, the majority of participants experienced side effects, which ranged from mild to moderate in intensity. Most of the side effects related to vaccination were temporary and went away within 3 days. Pain at or near the injection site was more commonly reported with MVA.HIVconsv than with ChAdV63.HIVconsv. The most common systemic side effect after vaccination was a general feeling of discomfort or illness.15

RIVER (NCT02336074)

In this Phase 2 study, 97% of participants who received ART along with ChAdV63.HIVconsv, MVA.HIVconsv, and vorinostat experienced side effects. Seventy percent of these side effects were mild, 23% were moderate, and 3% were severe in intensity. In the group that only received ART, 73% of participants experienced a side effect, of which 33% were mild, 20% were moderate, and 20% were severe. No serious side effects related to the study vaccines were reported.12,13,16

A substudy evaluating the central nervous system (CNS) impacts of trial interventions found no evidence of increased CNS damage with ART, therapeutic vaccination, and vorinostat compared to ART alone.17

Because ChAdV63.HIVconsv is still being studied, information on possible side effects of the vaccine is not complete. As testing of ChAdV63.HIVconsv continues, additional information on possible side effects will be gathered.

Where can I get more information about clinical trials studying ChAdV63.HIVconsv?Where can I get more information about clinical trials studying ChAdV63.HIVconsv?

Where can I get more information about clinical trials studying ChAdV63.HIVconsv?

More information about ChAdV63.HIVconsv-related research studies is available from ClinicalTrials.gov. (The ClinicalTrials.gov search can be modified so that you can get results that better match your interests. To learn more about the ClinicalTrials.gov search features, please see How to Search.)

Some clinical trials may be looking for volunteer participants. Your health care provider can help you decide whether participating in a clinical trial is right for you. For more information, visit NIH Clinical Research Trials and You.

ReferencesReferences

References

  1. Treatment Action Group website. Research toward a cure trials. Accessed December 5, 2023
  2. University of Oxford. A Phase I study to evaluate the safety and immunogenicity of simultaneous prime-boost immunisations with candidate HCV and HIV-1 vaccines, AdCh3NSmut1 / ChAdV63.HIVconsv and MVA-NSmut / MVA.HIVconsv, in healthy volunteers. In: ClinicalTrials.gov. Bethesda (MD): National Library of Medicine (US). Registered November 6, 2014. NLM Identifier: NCT02362217. Accessed December 5, 2023
  3. The History of Vaccines website. The future of immunization: the development of HIV vaccines. Accessed December 5, 2023
  4. Graziani GM, Angel JB. Evaluating the efficacy of therapeutic HIV vaccines through analytical treatment interruptions. J Int AIDS Soc. 2015;18(1):20497. doi:10.7448/IAS.18.1.20497. Accessed December 5, 2023
  5. HIV Vaccine Trials Network website. Types of vaccines. Accessed December 5, 2023
  6. University of Oxford. A randomized single-blind placebo-controlled study to evaluate the safety and immunogenicity of three candidate HIV-1 vaccines, pSG2.HIVconsv DNA, ChAdV63.HIVconsv and MVA.HIVconsv, administered in combination to healthy HIV 1 uninfected adults. In: ClinicalTrials.gov. Bethesda (MD): National Library of Medicine (US). Registered June 24, 2010. NLM Identifier: NCT01151319. Accessed December 5, 2023
  7. University College, London. A randomised double-blind, placebo-controlled Phase I/IIa trial to investigate the effect of depletion of serum amyloid P component (SAP) on the immune response to DNA vaccination in healthy male volunteers. In: ClinicalTrials.gov. Bethesda (MD): National Library of Medicine (US). Registered April 29, 2013. NLM Identifier: NCT02425241. Accessed December 5, 2023
  8. IrsiCaixa. Safety and immunogenicity of ChAdV63.HIVconsv and MVA.HIVconsv candidate HIV-1 vaccines in recently HIV-1 infected individuals with early viral suppression after initiation of antiretroviral therapy (HAART). In: ClinicalTrials.gov. Bethesda (MD): National Library of Medicine (US). Registered October 4, 2012. NLM Identifier: NCT01712425. Accessed December 5, 2023
  9. IrsiCaixa. An open label Phase I trial to evaluate the safety and effect of HIVconsv vaccines in combination with histone deacetylase inhibitor romidepsin on the viral rebound kinetic after treatment interruption in early treated HIV-1 infected individuals (BCN02-Romi). In: ClinicalTrials.gov. Bethesda (MD): National Library of Medicine (US). Registered November 9, 2015. NLM Identifier: NCT02616874. Accessed December 5, 2023
  10. Mothe B, Manzardo C, Sanchez-Bernabeu A, et al. Therapeutic vaccination refocuses T-cell responses towards conserved regions of HIV-1 in early treated individuals (BCN 01 study). EClinicalMedicine. 2019;11:65-80. doi:10.1016/j.eclinm.2019.05.009. Accessed December 5, 2023
  11. Mothe B, Rosás-Umbert M, Coll P, et al. HIVconsv vaccines and romidepsin in early-treated HIV-1-infected individuals: safety, immunogenicity and effect on the viral reservoir (Study BCN02). Front Immunol. 2020;11:823. doi:10.3389/fimmu.2020.00823. Accessed December 5, 2023
  12. Imperial College London. Research in viral eradication of HIV reservoirs. In: ClinicalTrials.gov. Bethesda (MD): National Library of Medicine (US). Registered on October 23, 2014. NLM Identifier: NCT02336074. Accessed December 5, 2023
  13. Fidler S. RIVER research in viral eradication of HIV reservoirs: a two-arm (proof of concept) randomised Phase II trial vorinostat plus a prime boost vaccine. Slides presented at: International AIDS Conference; July 23-27, 2018; Amsterdam, Netherlands. Accessed December 5, 2023
  14. Fidler S, Stöhr W, Pace M, et al. Antiretroviral therapy alone versus antiretroviral therapy with a kick and kill approach, on measures of the HIV reservoir in participants with recent HIV infection (the RIVER trial): a phase 2, randomised trial. Lancet. 2020;395(10227):888-898. doi:10.1016/S0140-6736(19)32990-3. Accessed December 5, 2023
  15. Mothe B, Manzardo C, Coll P, et al. Shaping CTL immunodominance with conserved HIV vaccines after early treatment (BCN01). Poster presented at: Conference on Retroviruses and Opportunistic Infections (CROI); February 22-25, 2016; Boston, MA. Poster 320. Accessed December 5, 2023
  16. Fidler S, Stohr W, Pace M, et al. A randomised controlled trial comparing the impact of antiretroviral therapy (ART) with a “Kick-and-Kill” approach to ART alone on HIV reservoirs in individuals with primary HIV infection (PHI); RIVER trial. Abstract presented at: International AIDS Conference; July 23-27, 2018; Amsterdam, Netherlands. Abstract TUAA0202LB. Accessed December 5, 2023
  17. Alagaratnam J, Stöhr W, Toombs J, et al. No evidence of neuronal damage as measured by neurofilament light chain in a HIV cure study utilising a kick-and-kill approach. J Virus Erad. 2021;7(3):100056. doi:10.1016/j.jve.2021.100056. Accessed December 5, 2023
 

Last Reviewed: December 5, 2023