Table 17i. Antiretroviral Therapy–Associated Adverse Effects and Management Recommendations– Nephrotoxic Effects

Updated: April 11, 2022 Reviewed: April 11, 2023

Adverse Effects	Associated ARVs	Onset/Clinical Manifestations	Estimated Frequency	Risk Factors	Prevention/ Monitoring	Management
Urolithiasis/ Nephrolithiasis	ATV DRV causes crystalluria, but it is not associated with nephrolithiasis.	 Onset Weeks to months after starting therapy Clinical Findings Crystalluria Hematuria Pyuria Flank pain Increased creatinine levels in some cases 	ATV-related nephrolithiasis occurs in <10% of patients and has been reported after stopping ATV.	In adults, elevated urine pH (>5.7) The risk factors in children are unknown.	 Prevention Maintain adequate hydration. Monitoring Obtain urinalysis at least every 6–12 months. 	Provide adequate hydration and pain control. Consider using another ARV drug in place of ATV.
Renal Dysfunction	TDF	 Onset Variable; in adults, renal dysfunction may occur weeks to months after initiating therapy. Hypophosphatemia appears at a median of 18 months. Glucosuria may occur after 1 year of therapy. Abnormal urine protein/osmolality ratio may be an early indicator. 	 Adults Approximately 2% of adults experience increased serum creatinine levels. Approximately 0.5% of adults experience severe renal complications. Children Approximately 4% of children experience 	Risk May Increase in Children With the Following Characteristics • Aged >6 years • Black race, Hispanic/Latino ethnicity • Advanced HIV infection • Hypertension	Monitor urine protein, urine glucose, and serum creatinine at 3- to 6-month intervals. Some Panel members routinely monitor serum phosphate levels in patients who are taking TDF. Measure serum phosphate if the patient experiences persistent proteinuria	If TDF is the likely cause, consider using an alternative ARV drug. TAF has significantly less toxicity than TDF. Changing from TDF to TAF may improve renal function.

		 Presentation More Common Increased serum creatinine levels, proteinuria, normoglycemic glucosuria Increased urinary protein/creatinine ratio and albumin/creatinine ratio Hypophosphatemia, usually asymptomatic; may present with bone and muscle pain or muscle weakness Less Common Renal failure, acute tubular necrosis, Fanconi syndrome, proximal renal tubulopathy, interstitial nephritis, nephrogenic diabetes insipidus with 	hypophosphatemia or proximal tubulopathy; frequency increases with prolonged TDF therapy and advanced HIV infection.	 Diabetes Concurrent use of Pls (especially LPV/r) and preexisting renal dysfunction Longer duration of TDF treatment The presence of the apolipoprotein L1 variants G1 and G2 appears to increase the risk of renal abnormality in children with HIV. These alleles are more common in persons of Black descent. 	or glucosuria or has symptoms of bone pain, muscle pain, or weakness. Because toxicity risk increases with the duration of TDF treatment, do not decrease the frequency of monitoring over time.	
Elevation in Serum Creatinine	DTG, COBI, RPV, BIC	 polyuria Onset Within 1 month of starting treatment Presentation Asymptomatic. These drugs decrease renal tubular secretion of creatinine, leading to an increase in serum creatinine levels without a true change in eGFR. Clinicians need to distinguish between a true 	Common laboratory finding.	The risk factors in children are unknown.	Monitor serum creatinine. Assess for renal dysfunction if serum creatinine increases by >0.4 mg/dL or if increases continue over time.	No need to change therapy. Reassure the patient about the benign nature of the laboratory abnormality.

Table 17 Antiretroviral Therapy–Associated Adverse Effects and Management Recommendations—Nephrotoxic Effects

Table 17 I. Antiretroviral Therapy–Associated Adverse Effects and Management Recommendations—Nephrotoxic Effects

		change in eGFR and other causes. A true change may be associated with other medical conditions, the continuing rise of serum creatinine levels over time, and albuminuria.				
--	--	--	--	--	--	--

Key: ARV = antiretroviral; ATV = atazanavir; BIC = bictegravir; COBI = cobicistat; DRV = darunavir; DTG = dolutegravir; eGFR = estimated glomerular filtration rate; LPV/r = lopinavir/ritonavir; mg/dL = milligrams per deciliter; Panel = The Panel on Antiretroviral Therapy and Medical Management of Children Living With HIV; PI = protease inhibitor; RPV = rilpivirine; TAF = tenofovir alafenamide; TDF = tenofovir disoproxil fumarate

References

- 1. Aliyannissa A, Kuswiyanto RB, Setiabudi D, Nataprawira HM, Alam A, Sekarwana N. Correlation between CD4 count and glomerular filtration rate or urine protein:creatinine ratio in human immunodeficiency virus–infected children. *Kidney Res Clin Pract*. 2020;39(1):40-46. Available at: <u>https://www.ncbi.nlm.nih.gov/pubmed/32146732</u>.
- 2. Andiman WA, Chernoff MC, Mitchell C, et al. Incidence of persistent renal dysfunction in human immunodeficiency virus–infected children: associations with the use of antiretrovirals, and other nephrotoxic medications and risk factors. *Pediatr Infect Dis J*. 2009;28(7):619-625. Available at: <u>http://www.ncbi.nlm.nih.gov/pubmed/19561425</u>.
- 3. Beng H, Rakhmanina N, Moudgil A, et al. HIV-Associated CKDs in children and adolescents. *Kidney Int Rep.* 2020;5(12):2292-2300. Available at: <u>https://www.ncbi.nlm.nih.gov/pubmed/33305123</u>.
- 4. Bk K, Tiwari S, Chhapola V, Debnath E, Seth A, Jain A. Brief report: subclinical kidney dysfunction in HIV-infected children: a cross-sectional study. *J Acquir Immune Defic Syndr*. 2020;85(4):470-474. Available at: https://www.ncbi.nlm.nih.gov/pubmed/33136747.
- 5. Brunel V, Massy N, Malval B. Atazanavir urolithiasis without recent intake of atazanavir. *Ann Biol Clin (Paris)*. 2019;77(4):459-460. Available at: <u>https://www.ncbi.nlm.nih.gov/pubmed/31418708</u>.
- 6. Bunupuradah T, Phupitakphol T, Sophonphan J, et al. Prevalence of persistent renal dysfunction in perinatally HIV-infected Thai adolescents. *Pediatr Infect Dis J*. 2017. Available at: <u>https://www.ncbi.nlm.nih.gov/pubmed/28719505</u>.
- 7. Campbell L, Barbini B, Burling B, et al. Safety of tenofovir alafenamide in people with HIV who experienced proximal renal tubulopathy on tenofovir disproxil fumarate. *J Acquir Immune Defic Syndr*. 2021;88(2):214-219. Available at: https://www.ncbi.nlm.nih.gov/pubmed/34506361.
- 8. de Lastours V, Ferrari Rafael De Silva E, Daudon M, et al. High levels of atazanavir and darunavir in urine and crystalluria in asymptomatic patients. *J Antimicrob Chemother*. 2013;68(8):1850-1856. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23599359.
- 9. Ekulu PM, Nkoy AB, Betukumesu DK, et al. *APOL1* risk genotypes are associated with early kidney damage in children in sub-Saharan Africa. *Kidney Int Rep.* 2019;4(7):930-938. Available at: <u>https://www.ncbi.nlm.nih.gov/pubmed/31317115</u>.
- 10. German P, Liu HC, Szwarcberg J, et al. Effect of cobicistat on glomerular filtration rate in subjects with normal and impaired renal function. *J Acquir Immune Defic Syndr*. 2012;61(1):32-40. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22732469.

- 11. Gupta SK, Post FA, Arribas JR, et al. Renal safety of tenofovir alafenamide vs tenofovir disoproxil fumarate: a pooled analysis of 26 clinical trials. *AIDS*. 2019;33(9):1455–1465. Available at: <u>https://www.ncbi.nlm.nih.gov/pubmed/30932951</u>.
- 12. Judd A, Boyd KL, Stohr W, et al. Effect of tenofovir disoproxil fumarate on risk of renal abnormality in HIV-1-infected children on antiretroviral therapy: a nested case-control study. *AIDS*. 2010;24(4):525-534. Available at: http://www.ncbi.nlm.nih.gov/pubmed/20139752.
- 13. Lim Y, Lyall H, Foster C. Tenofovir-associated nephrotoxicity in children with perinatally-acquired HIV infection: a single-centre cohort study. *Clin Drug Investig.* 2015;35(5):327-333. Available at: <u>http://www.ncbi.nlm.nih.gov/pubmed/25861908</u>.
- 14. Lin KY, Liao SH, Liu WC, et al. Cholelithiasis and nephrolithiasis in HIV-positive patients in the era of combination antiretroviral therapy. *PLoS One*. 2015;10(9):e0137660. Available at: <u>https://www.ncbi.nlm.nih.gov/pubmed/26360703</u>.
- 15. Marcelin JR, Berg ML, Tan EM, Amer H, Cummins NW, Rizza SA. Is abnormal urine protein/osmolality ratio associated with abnormal renal function in patients receiving tenofovir disoproxil fumarate? *PLoS One*. 2016;11(2):e0149562. Available at: https://www.ncbi.nlm.nih.gov/pubmed/26872144.
- 16. Nachman SA, Chernoff M, Gona P, et al. Incidence of noninfectious conditions in perinatally HIV-infected children and adolescents in the HAART era. *Arch Pediatr Adolesc Med.* 2009;163(2):164-171. Available at: <u>http://www.ncbi.nlm.nih.gov/pubmed/19188649</u>.
- 17. Nishijima T, Hamada Y, Watanabe K, et al. Ritonavir-boosted darunavir is rarely associated with nephrolithiasis compared with ritonavir-boosted atazanavir in HIV-infected patients. *PLoS One*. 2013;8(10):e77268. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24130871.
- 18. Purswani M, Patel K, Kopp JB, et al. Tenofovir treatment duration predicts proteinuria in a multiethnic United States cohort of children and adolescents with perinatal HIV-1 infection. *Pediatr Infect Dis J.* 2013;32(5):495-500. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23249917.
- 19. Purswani MU, Patel K, Winkler CA, et al. Brief report: APOL1 renal risk variants are associated with chronic kidney disease in children and youth with perinatal HIV infection. *J Acquir Immune Defic Syndr*. 2016;73(1):63-68. Available at: https://www.ncbi.nlm.nih.gov/pubmed/27035887.
- 20. Riordan A, Judd A, Boyd K, et al. Tenofovir use in human immunodeficiency virus-1-infected children in the United Kingdom and Ireland. *Pediatr Infect Dis J.* 2009;28(3):204-209. Available at: <u>http://www.ncbi.nlm.nih.gov/pubmed/19209091</u>.

- 21. Samarawickrama A, Cai M, Smith ER, et al. Simultaneous measurement of urinary albumin and total protein may facilitate decision-making in HIV-infected patients with proteinuria. *HIV Med*. 2012;13(9):526-532. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22413854.
- 22. Seo JW, Kim K, Jun KI, et al. Recovery of tenofovir-induced nephrotoxicity following switch from tenofovir disoproxil fumarate to tenofovir alafenamide in human immunodeficiency virus–positive patients. *Infect Chemother*. 2020;52(3):381-388. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32757496.
- 23. Soares DS, Cavalcante MG, Ribeiro SM, et al. Acute kidney injury in HIV-infected children: comparison of patients according to the use of highly active antiretroviral therapy. *J Pediatr (Rio J)*. 2016;92(6):631-637. Available at: https://www.ncbi.nlm.nih.gov/pubmed/27542916.
- 24. Soler-Palacin P, Melendo S, Noguera-Julian A, et al. Prospective study of renal function in HIV-infected pediatric patients receiving tenofovir-containing HAART regimens. *AIDS*. 2011;25(2):171-176. Available at: <u>http://www.ncbi.nlm.nih.gov/pubmed/21076275</u>.