HIV and the Older Person

Updated: December 18, 2019 **Reviewed:** December 18, 2019

Key Considerations and Recommendations When Caring for Older Persons with HIV

- Antiretroviral therapy (ART) is recommended for all people with HIV regardless of CD4 T lymphocyte cell count (AI). ART
 is especially important for older individuals because they have a greater risk of serious non-AIDS complications and
 potentially a blunted immunologic response to ART.
- Given that the burden of aging-related diseases is significantly higher among persons with HIV than in the general
 population, additional medical and social services may be required to effectively manage both HIV and comorbid
 conditions.
- Adverse drug events from ART and concomitant drugs may occur more frequently in older persons with HIV than in
 younger individuals with HIV. Therefore, the bone, kidney, metabolic, cardiovascular, cognitive, and liver health of older
 individuals with HIV should be monitored closely.
- Polypharmacy is common in older persons with HIV; therefore, there is a greater risk of drug-drug interactions between antiretroviral drugs and concomitant medications. Potential for drug-drug interactions should be assessed regularly, especially when starting or switching ART and concomitant medications.
- The decline in neurocognitive function with aging is faster in people with HIV than in people without HIV. HIV-associated
 neurocognitive disorder (HAND) is associated with reduced adherence to therapy and poorer health outcomes including
 increased risk of death. For persons with progressively worsening symptoms of HAND, referral to a neurologist for
 evaluation and management or a neuropsychologist for formal neurocognitive testing may be warranted (BIII).
- Mental health disorders are a growing concern in aging people with HIV. A heightened risk of mood disorders including
 anxiety and depression has been observed in this population. Screening for depression and management of mental health
 issues are critical in caring for persons with HIV.
- HIV experts, primary care providers, and other specialists should work together to optimize the medical care of older persons with HIV and complex comorbidities.
- Early diagnosis of HIV and counseling to prevent secondary transmission of HIV remains an important aspect of the care of older people with HIV.

Rating of Recommendations: A = Strong; B = Moderate; C = Weak

Rating of Evidence: I = Data from randomized controlled trials; II = Data from well-designed nonrandomized trials or observational cohort studies with long-term clinical outcomes; III = Expert opinion

Introduction

Effective antiretroviral therapy (ART) has increased survival in individuals with HIV, 1,2 resulting in an increasing number of older individuals living with HIV. In the United States, from 2012 through 2017, the annual fraction of persons newly diagnosed with HIV aged \geq 50 years was stably 17%. Among persons with HIV at year-end 2016, 48% were aged \geq 50 years, 8% were aged \geq 65 years, and trends suggest that these proportions will increase steadily. Care of people with HIV will increasingly involve adults aged \geq 60 years, a population for which data from clinical trials or pharmacokinetic (PK) studies are very limited. The discussion in this section of the guidelines refers to individuals aged \geq 50 years as older persons with HIV.

There are several distinct areas of concern regarding aging and HIV.⁴ First, older persons with HIV may suffer from aging-related comorbid illnesses and require substantially more non-ART

medications⁵ than younger people, which may complicate HIV clinical care.⁶ Second, HIV disease may affect the biology of aging, possibly resulting in early manifestations of clinical syndromes generally associated with more advanced age. Third, reduced mucosal and immunologic defenses (e.g., postmenopausal atrophic vaginitis) and changes in risk related-behaviors (e.g., decrease in condom use because of less concern about pregnancy or more high-risk sexual activity with increased use of erectile dysfunction drugs) in older adults may lead to increased risk of acquisition and transmission of HIV.^{7,8} Finally, HIV screening among older adults remains low because they are generally perceived to be at low risk of acquiring HIV.

HIV Screening and Diagnosis in the Older Person

Failure to consider a diagnosis of HIV has likely contributed to later initiation of ART in older persons with HIV. The Centers for Disease Control and Prevention (CDC) estimates that in 2016, 36% of adults aged ≥55 years met the case definition for AIDS at the time of HIV diagnosis. The comparable CDC estimates are 16% for adults aged 25 to 34 years and 27% for adults aged 35 to 44 years. In one observational cohort, older people (defined as those aged ≥35 years) appeared to have lower CD4 T lymphocyte (CD4) cell counts at seroconversion and steeper CD4 count decline over time, and tended to present to care with significantly lower CD4 counts. When individuals aged >50 years present with severe illnesses, HIV and AIDS-related opportunistic infections (OIs) need to be considered in the differential diagnosis of the illness.

Although many older individuals engage in risk behaviors associated with acquisition of HIV, they may see themselves or be perceived by providers as at low risk of infection and, as a result, they are less likely to be tested for HIV infection than younger persons. Despite CDC guidelines recommending HIV testing at least once for individuals aged 13 to 64 years, and more frequently for those at risk, HIV testing prevalence remains low (<5%) among adults aged 50 to 64 years, and decreases with increasing age. Clinicians must be attuned to the possibility of HIV infection in older adults, including those aged ≥64 years, especially in those who may engage in high-risk behaviors. Sexual history taking and screening for other risk factors (e.g., injection drug use) that may place older adults at risk of HIV infection are therefore an important component of general health management for older adults. Risk-reduction counseling, and screening for HIV and sexually transmitted infections should be done, if indicated. Older adults who are at risk of acquiring HIV should be counseled on comprehensive HIV prevention strategies, including the option of HIV pre-exposure prophylaxis (PrEP). Age alone should not exclude older adults from being evaluated for and offered PrEP (refer to CDC PrEP Guidelines for details).

Impact of Age on HIV Disease Progression

HIV infection in older persons presents unique challenges and these challenges may be compounded by ART:

- Chronic HIV infection is associated with elevated cellular and soluble markers of immune activation and inflammation. Although these levels decline with ART, they remain higher than normal, even with suppressive ART. Levels of these markers also increase with aging, and the rate of this age-related change was demonstrated to be faster in people with HIV with viremia than in those with virologic suppression on ART and in people without HIV.¹⁷
- HIV infection may induce immuno-phenotypic changes akin to accelerated aging, with senescent
 T cells which in older persons have been associated with negative outcomes including frailty and

cardiovascular disease. 4,18-21 Some studies have shown that people with HIV may exhibit chromosomal and immunologic features similar to those induced by aging, such as the accumulation of highly differentiated CD28-/CD57+ CD8+ T cells commonly used as markers of immunosenescence. 22-24 However, other studies show the immunologic changes in HIV to be distinct from age-related changes. 25 Cytomegalovirus (CMV) infection is very prevalent among people with HIV, and as they age, immune response to CMV—rather than HIV—may play a pivotal role in immunosenescence observed even in people with virologic suppression. 26

- Although data on the increased incidence and prevalence of age-associated comorbidities in people with HIV are accumulating, ^{27,28} the age at diagnosis for myocardial infarction, stroke, and non-AIDS cancers in people with and without HIV is the same. ^{28,29}
- As the life expectancy of persons living with HIV increases with ART, more cisgender women with HIV are experiencing menopause. Although menopause may occur earlier in cisgender women with HIV than in cisgender women in the general population, ³⁰ early menopause may also be a consequence of smoking, depression, substance use, and other psychosocial factors that are disproportionately present in cisgender women with HIV.³¹
- Older persons with HIV have a greater incidence of health complications and comorbidities than adults of a similar age who do not have HIV, and may exhibit a frailty phenotype (defined clinically as a decrease in muscle mass, weight, physical strength, energy, and physical activity) earlier and in greater proportions than the general population. ^{32,33} Frailty in persons with HIV has been associated with adverse outcomes including incident cardiovascular disease, diabetes mellitus, recurrent falls and fractures, lower quality of life scores, cognitive impairment, hospitalization, and mortality. ³⁴⁻⁴³ Cisgender women have an increased risk of osteopenia, osteoporosis, and fractures, particularly after menopause, and this risk is exacerbated by HIV and ART. ^{34, 44-46} Although the frailty phenotype is still incompletely characterized in people with HIV, its early recognition may lead to targeted interventions to improve the wellbeing of this population. ⁴³

Antiretroviral Therapy in the Older Person with HIV

Importance of Early Treatment Initiation

ART is recommended for all individuals with HIV (**AI**; see <u>Initiation of Antiretroviral Therapy</u>). Early treatment may be particularly important in older adults in part because of decreased immune recovery and increased risk of serious non-AIDS events in this population. ART were projected to be greatest in the oldest age group (people aged 45 to 65 years). This was demonstrated in an analysis of HIV cohorts from Europe and the Americas showing a lower all-cause and non-AIDS mortality with immediate ART initiation in people aged 50 to 70 years. It was also seen in a START substudy in which persons aged >50 years were among the groups that experienced the greatest risk reduction when ART was started when CD4 counts were >500 cells/mm³. All older persons with HIV should be informed that maintaining a plasma HIV RNA (viral load) at <200 copies/mL with ART improves overall health and prevents sexual transmission of HIV.

Choice of Antiretroviral Regimens in the Older Person with HIV

The choice of antiretroviral (ARV) regimen for an older person with HIV should be informed by a comprehensive review of the person's other medical conditions and medications. The What to Start

section (Table 7) of these guidelines provides guidance on selecting an ARV regimen based on a person's characteristics and specific clinical conditions (e.g., kidney disease, elevated risk for cardiovascular disease, osteoporosis). In older persons with HIV and reduced renal function, dosage adjustment of nucleoside reverse transcriptase inhibitors (NRTIs) may be necessary (see Appendix B, Table 12). In addition, ARV regimen selection may be influenced by potential interactions between ARV medications and drugs used concomitantly to manage comorbidities (see Tables 24a-25b). Adults aged >50 years should be monitored for ART effectiveness and safety as similarly recommended for other populations with HIV (see Table 3); however, in older persons, special attention should be paid to the greater potential for adverse effects of ART on renal, liver, cardiovascular, central nervous system, metabolic, and bone health (see Table 20). ART regimens that contain tenofovir disoproxil fumarate (TDF), boosted protease inhibitors (PIs), or both are associated with a significantly greater loss of bone mineral density than regimens containing other NRTIs and integrase strand transfer inhibitors (INSTIs). 52-55 Abacavir (ABC), NRTI-sparing regimens, and tenofovir alafenamide may be considered as alternatives to the use of TDF in older individuals who may be at risk of osteopenia or osteoporosis; however, with ABC, the benefit should be balanced with potentially increasing risk of cardiovascular disease.

Antiretroviral Efficacy and Safety Considerations in the Older Person with HIV

The efficacy, PKs, adverse effects, and drug interaction potentials of ART in the older adult have not been studied systematically. There is no evidence that the virologic response to ART differs in older and younger people. In an observational study, a higher rate of viral suppression was seen in people aged >55 years than in younger people. However, ART-associated CD4 cell recovery in older adults is generally slower and lower in magnitude than in younger people; 12,57-59 suggesting that starting ART at a younger age may result in better immunologic response and possibly clinical outcomes.

Hepatic metabolism and renal elimination are the major routes of drug clearance, including the clearance of ARV drugs. Both liver and kidney functions decrease with age and may result in impaired drug elimination and increased drug exposure. Most clinical trials have included only a small proportion of participants aged >50 years, and current ARV dosing recommendations are based on PK and pharmacodynamic data derived from participants with normal organ function. Because it is unknown whether drug accumulation in the older person may lead to greater incidence and severity of adverse effects than seen in younger persons, therapy in older persons requires close monitoring and heightened awareness of drug-related adverse outcomes.

Impact of Comorbidities and Polypharmacy in Older Persons with HIV

People with HIV and aging-associated comorbidities may require additional pharmacologic interventions that can complicate therapeutic management.⁵ In addition to taking medications to manage HIV infection and comorbid conditions, many older persons with HIV are also taking medications to relieve discomfort (e.g., pain medications, sedatives) or to manage adverse effects of medications (e.g., anti-emetics). Older individuals may also self-medicate with over-the-counter medicines or supplements.

Polypharmacy is more common in older persons with HIV than similarly aged persons in the general population. $^{5,61-63}$ In one large cohort of older patients with HIV in France, 62% of those whose HIV was diagnosed before 2000 had one or more comorbidities, and 70% were receiving at least one comedication. 64 Among persons living with HIV aged \geq 65 years, the prevalence of comorbidities and

polypharmacy rose with increasing age and duration of HIV infection.⁶⁵

In older persons without HIV, polypharmacy is a major cause of iatrogenic complications.⁶⁶ Some of these complications may be caused by medication errors (by prescribers or patients), medication nonadherence, additive drug toxicities, and drug-drug interactions. Older persons with HIV are probably at an even greater risk of polypharmacy-related adverse consequences than younger or similarly aged people without HIV. When evaluating any new clinical complaint or laboratory abnormality in people with HIV, especially in older persons, clinicians should always consider the possible role of adverse drug reactions from both ARV drugs and other concomitantly administered medications.

Drug-Drug Interaction Concerns

Drug-drug interactions are common with ART and can be easily overlooked by prescribers. ⁶⁷ Potential drug-drug interactions can occur between ARV and non-ARV medications, as well as between non-ARV medications. ⁶³ The available drug interaction information on ARV agents is derived primarily from PK studies performed in small numbers of relatively young participants with normal organ function who do not have HIV (see Tables <u>24a-25b</u>). Data from these studies provide clinicians with a basis to assess whether a significant interaction may exist. However, the magnitude of an interaction may be greater in older persons with HIV than in younger people with HIV; therefore, it is very important to remain vigilant to potential drug-drug interactions given the high prevalence of polypharmacy in older persons with HIV. In reviews of ARV and non-ARV medications prescribed for older persons with HIV, more than half of the medications had the potential for drug-drug interaction, including some severe interactions. ^{68,69} The risk appears to be higher with PI-based ART than with INSTI-based ART. ⁶⁸⁻⁷⁰

Adherence Concerns

Suboptimal adherence to ART is the most common cause of treatment failure. Complex dosing requirements, high pill burden, polypharmacy, inability to access medications because of cost or availability, limited health literacy (including misunderstanding of instructions), depression, and neurocognitive impairment are among the key reasons for nonadherence. Although many of these factors associated with nonadherence may be more prevalent in older persons with HIV, some studies have shown better adherence to ART among older persons than younger individuals. Severe menopausal symptoms are also associated with reduced adherence to ART, which increases the risk of drug resistance and adverse HIV-related health outcomes in menopausal cisgender women. Clinicians should regularly engage with older persons to identify any factors, such as neurocognitive deficits or hormonal changes, that may decrease adherence to ART. To facilitate medication adherence, it may be useful to discontinue unnecessary medications, simplify regimens, and recommend evidence-based behavioral approaches including the use of adherence aids such as pillboxes or daily calendars, and support from family members (see Adherence to the Continuum of Care).

Optimizing Antiretroviral Therapy in Older Persons with HIV

Given the greater incidence of comorbidities, non-AIDS complications, and frailty among older people with HIV, switching one or more ARVs in an HIV regimen may be necessary to minimize toxicities and drug-drug interactions. For example, expert guidance now recommends bone density monitoring in men aged ≥50 years and postmenopausal cisgender women, and suggests switching

from TDF or boosted PIs to other ARVs in older persons at high risk for fragility fractures. ⁷⁶ Given the high prevalence and faster progression of chronic kidney disease in aging persons with HIV, likely from a combination of HIV, ART, and non-HIV risk factors, development of the disease in an older person on ART must be monitored with great vigilance. ^{77,78} In persons with HIV at risk for or with declining renal function, consideration should be given to avoiding regimens containing TDF and atazanavir. ⁷⁹

Interrupting or Discontinuing Antiretroviral Therapy in Older Persons with HIV

Few data exist on the use of ART in severely debilitated people with chronic, severe, or non-AIDS-related terminal conditions. Withdrawal of ART usually results in rebound viremia and a decline in CD4 count. In addition, an acute retroviral syndrome after abrupt discontinuation of ART has been reported. Even in severely debilitated adults, most clinicians would continue therapy if there are no significant adverse reactions to the ARV drugs. In cases where ART negatively affects quality of life, the decision to continue therapy should be made together with the patient and/or family members after a discussion of the risks and benefits of continuing or withdrawing treatment.

Non-AIDS HIV-Related Complications and Other Comorbidities in the Older Person with HIV

As AIDS-related morbidity and mortality have decreased among persons treated effectively with ART, non-AIDS conditions constitute an increasing proportion of serious illnesses among people with HIV. 82-84 The burden of age-related diseases is significantly higher among persons with HIV than in the general population, likely due to both traditional non-HIV-related and HIV-related factors. 85 Heart disease and cancer are the leading causes of death in older Americans. 66 Similarly, other non-AIDS events such as cognitive impairment, and liver disease have also emerged as major causes of morbidity and mortality in people with HIV receiving effective ART. Moreover, people with HIV are more likely to be current or former cigarette smokers than adults without HIV, 87 and model-based analyses have suggested that smoking cessation could improve life expectancy among older adults with HIV on ART. 88

The prevalence of multimorbidity among persons with HIV has increased in the past decade, ⁸⁹ with hypertension and hypercholesterolemia being the most common comorbidities. The presence of multiple non-AIDS comorbidities coupled with the immunologic effects of HIV infection may add to the disease burden of aging among adults with HIV. ⁹⁰⁻⁹²

HIV-specific primary care guidelines have been developed and are available for clinicians caring for older persons with HIV. ^{93,94} Specific guidelines have also been developed for the evaluation and management of the following specific comorbidities in people with HIV: bone health, ⁷⁶ kidney disease, ⁹⁵ and cardiovascular disease. ⁹⁶ In addition, the following guidelines recently developed for the general population can be applied to the older persons with HIV: management of hyperglycemia. However, it is important to note that the recommendations in these guidelines have not all been validated in the context of HIV disease. For instance, cardiovascular risk prediction functions developed for the general population likely underestimate the risk in persons with HIV. ⁹⁹

Neurocognitive Impairment and Mental Health Concerns in the Older Person with HIV

HIV-associated neurocognitive disorder (HAND), manifesting as difficulty with memory, attention,

speed of information processing, and executive and motor functions, affects up to 30% of people with HIV on virally suppressive ART. ¹⁰⁰ Though an accurate prevalence of neurocognitive impairment in older people with HIV is not yet available, the risk of HIV-associated brain injury and HAND appears to be higher with increasing age. ¹⁰¹⁻¹⁰³ Neurocognitive function declines with increasing age in people with or without HIV, but the trajectory of the decline is steeper in individuals with HIV. ¹⁰⁴ This accelerated decline is likely multifactorial, relating to injury associated with direct HIV effects in the brain, higher prevalence of comorbidities and coinfections, more severe vascular disease, mental health disorders, social isolation, and polypharmacy in this population. ¹⁰⁵⁻¹⁰⁷ Hormonal shifts that occur with aging may contribute to neurocognitive impairment, and these changes may manifest as unique differences in clinical manifestations by gender. ¹⁰⁸ Finally, the risk of neurodegenerative disease rises with increasing age independent of HIV, and differentiating HAND from Alzheimer's disease or other forms of progressive dementia is now an important clinical concern. ¹⁰⁹

HAND carries potentially detrimental clinical consequences for aging people with HIV. In a prospective observational study, neurocognitive impairment was predictive of lower likelihood of retention in care among older persons. HAND is also associated with reduced adherence to therapy and poorer health outcomes including increased mortality. Given the importance of cognitive health, screening for neurocognitive impairment is important, though optimal primary-care based screening methods are as yet unclear. Initial screening with questions regarding any symptoms of memory or concentration difficulties should be performed routinely, though individuals with substantial impairment may not have enough insight into their condition to answer the questions. No brief cognitive screening test has been clearly shown to be sensitive or specific for HAND; the frequently used Mini-Mental State Exam does not typically capture executive function impairment which is the main manifestation of subtle HAND. HAND appropriately cognitive Assessment may be more sensitive for HAND but is not specific. If a patient has persistent concerns over time, has symptoms corroborated by an acquaintance, or has progressively worsening symptoms, referral to a neurologist for evaluation and management or to a neuropsychologist for formal neuropsychological testing may be warranted (BIII).

Mental health disorders are a growing concern in aging people with HIV, though little is known about their prevalence and consequences in this population specifically. In a study that compared a cohort of individuals aged >60 years with HIV to a historical control group of healthy older individuals, a heightened risk of mood disorders including anxiety and depression was noted among those with HIV. ¹¹⁴ Social isolation combined with depression is particularly common among older adults with HIV and, in addition to its direct effects on morbidity and mortality, may contribute to poor medication adherence and retention in care. ^{115,116} The risk of suicide remains greater in people with HIV than in the general population, though increasing age may not further heighten the risk. ¹¹⁷ Screening for depression and management of mental health issues are critical aspects of HIV primary care; guidelines for people with HIV, as well as for aging individuals without HIV, recommend behavioral approaches including individual psychotherapy, cognitive behavioral therapy, and group therapy, and often pharmacological treatment. ^{118,119} Integrated care models with routine screening by health care support staff, review by primary providers, and referral to on-site mental health specialists are likely to be the most effective approaches in vulnerable aging populations.

Health Care Utilization, Cost Sharing, and End-of-Life Issues

The significantly increased burden of age-related comorbidities, including cardiovascular disease, chronic kidney disease, neurocognitive disease, and fractures, leads to a considerable increase in

healthcare utilization and higher costs. ¹²⁰ Out-of-pocket health care expenses (e.g., copayments, deductibles), loss of employment, and other financial-related factors can cause temporary interruptions in treatment, including ART, which should be avoided whenever possible. The increased life expectancy and higher prevalence of chronic complications in aging populations with HIV can place greater demands upon HIV services¹²¹ and require a focused approach to prioritize modifiable health-related problems. ¹²² Facilitating continued access to insurance can minimize treatment interruptions and reduce the need for other services to manage concomitant chronic disorders. As with all aging people, it is important to discuss living wills, advance directives, and long-term care planning.

Conclusion

HIV infection can be overlooked in aging adults who tend to present with more advanced disease and experience accelerated CD4 loss. HIV induces immune-phenotypic changes that have been compared to accelerated aging. Effective ART has prolonged the life expectancy of people with HIV, increasing the number of adults aged >50 years living with HIV. However, unique challenges in this population include greater incidence of health complications and comorbidities, some of which may be exacerbated or accelerated by long-term use of some ARV drugs. Providing comprehensive multidisciplinary medical and psychosocial support to patients and their families (the "Medical Home" concept) is of paramount importance in the aging population. Continued involvement of HIV experts, geriatricians, and other specialists in the care of older persons with HIV is warranted.

References

- 1. Marcus JL, Chao CR, Leyden WA, et al. Narrowing the gap in life expectancy between HIV-infected and HIV-uninfected individuals with access to care. *J Acquir Immune Defic Syndr*. 2016;73(1):39-46. Available at: https://www.ncbi.nlm.nih.gov/pubmed/27028501.
- 2. Legarth RA, Ahlstrom MG, Kronborg G, et al. Long-term mortality in HIV-infected individuals 50 years or older: a nationwide, population-based cohort study. *J Acquir Immune Defic Syndr*. 2016;71(2):213-218. Available at: https://www.ncbi.nlm.nih.gov/pubmed/26334734.
- 3. Centers for Disease Control and Prevention. *HIV Surveillance Report, 2017; vol. 29*. 2018. Available at: http://www.cdc.gov/hiv/library/reports/hiv-surveillance.html. Accessed: June 3, 2019.
- 4. Deeks SG, Phillips AN. HIV infection, antiretroviral treatment, ageing, and non-AIDS related morbidity. *BMJ*. 2009;338:a3172. Available at: https://www.ncbi.nlm.nih.gov/pubmed/19171560.
- 5. Kong AM, Pozen A, Anastos K, Kelvin EA, Nash D. Non-HIV comorbid conditions and polypharmacy among people living with HIV age 65 or older compared with HIV-negative individuals age 65 or older in the United States: a retrospective claims-based analysis. *AIDS Patient Care STDS*. 2019;33(3):93-103. Available at: https://www.ncbi.nlm.nih.gov/pubmed/30844304.
- 6. Zhao H, Goetz MB. Complications of HIV infection in an ageing population: challenges in managing older patients on long-term combination antiretroviral therapy. *J Antimicrob Chemother*. 2011;66(6):1210-1214. Available at: https://www.ncbi.nlm.nih.gov/pubmed/21421583.
- 7. Levy JA, Ory MG, Crystal S. HIV/AIDS interventions for midlife and older adults: current status and challenges. *J Acquir Immune Defic Syndr*. 2003;33 Suppl 2:S59-67. Available at: https://www.ncbi.nlm.nih.gov/pubmed/12853854.
- 8. Levy BR, Ding L, Lakra D, Kosteas J, Niccolai L. Older persons' exclusion from sexually transmitted disease risk-reduction clinical trials. *Sex Transm Dis.* 2007;34(8):541-544. Available at: https://www.ncbi.nlm.nih.gov/pubmed/17297381.
- 9. Althoff KN, Gebo KA, Gange SJ, et al. CD4 count at presentation for HIV care in the United States and Canada: are those over 50 years more likely to have a delayed presentation? *AIDS Res Ther*. 2010;7:45. Available at: https://www.ncbi.nlm.nih.gov/pubmed/21159161.
- 10. Centers for Disease Control and Prevention. Monitoring selected national HIV prevention and care objectives by using HIV surveillance data—United States and 6 dependent areas. *HIV Surveillance Supplemental Report* 2018. Available at: http://www.cdc.gov/hiv/library/reports/hiv-surveillance.html.
- 11. Lodi S, Phillips A, Touloumi G, et al. Time from human immunodeficiency virus seroconversion to reaching CD4+ cell count thresholds <200, <350, and <500 Cells/mm(3): assessment of need following changes in treatment guidelines. *Clin Infect Dis*.

- 2011;53(8):817-825. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21921225.
- 12. Sabin CA, Smith CJ, d'Arminio Monforte A, et al. Response to combination antiretroviral therapy: variation by age. *AIDS*. 2008;22(12):1463-1473. Available at: https://www.ncbi.nlm.nih.gov/pubmed/18614870.
- 13. Stone VE, Bounds BC, Muse VV, Ferry JA. Case records of the Massachusetts General Hospital. Case 29-2009. An 81-year-old man with weight loss, odynophagia, and failure to thrive. *N Engl J Med*. 2009;361(12):1189-1198. Available at: https://www.ncbi.nlm.nih.gov/pubmed/19759382.
- 14. Ward EG, Disch WB, Schensul JJ, Levy JA. Understanding low-income, minority older adult self-perceptions of HIV risk. *J Assoc Nurses AIDS Care*. 2011;22(1):26-37. Available at: http://www.ncbi.nlm.nih.gov/pubmed/20580270.
- 15. Branson BM, Handsfield HH, Lampe MA, et al. Revised recommendations for HIV testing of adults, adolescents, and pregnant women in health-care settings. *MMWR Recomm Rep.* 2006;55(RR-14):1-17. Available at: https://www.ncbi.nlm.nih.gov/pubmed/16988643.
- 16. Ford CL, Godette DC, Mulatu MS, Gaines TL. Recent HIV testing prevalence, determinants, and disparities among U.S. older adult respondents to the Behavioral Risk Factor Surveillance System. *Sex Transm Dis.* 2015;42(8):405-410. Available at: http://www.ncbi.nlm.nih.gov/pubmed/26165428.
- 17. Angelovich TA, Hearps AC, Maisa A, et al. Viremic and virologically suppressed HIV Infection increases age-related changes to monocyte activation equivalent to 12 and 4 years of aging, respectively. *J Acquir Immune Defic Syndr*. 2015;69(1):11-17. Available at: https://www.ncbi.nlm.nih.gov/pubmed/25647525.
- 18. Martin J, Volberding P. HIV and premature aging: a field still in its infancy. *Ann Intern Med.* 2010;153(7):477-479. Available at: https://www.ncbi.nlm.nih.gov/pubmed/20921548.
- 19. Deeks SG, Verdin E, McCune JM. Immunosenescence and HIV. *Curr Opin Immunol*. 2012;24(4):501-506. Available at: https://www.ncbi.nlm.nih.gov/pubmed/22658763.
- 20. Kaplan RC, Sinclair E, Landay AL, et al. T cell activation and senescence predict subclinical carotid artery disease in HIV-infected women. *J Infect Dis*. 2011;203(4):452-463. Available at: https://www.ncbi.nlm.nih.gov/pubmed/21220772.
- 21. Spyridopoulos I, Martin-Ruiz C, Hilkens C, et al. CMV seropositivity and T-cell senescence predict increased cardiovascular mortality in octogenarians: results from the Newcastle 85+ study. *Aging Cell*. 2016;15(2):389-392. Available at: https://www.ncbi.nlm.nih.gov/pubmed/26696322.
- 22. Papagno L, Spina CA, Marchant A, et al. Immune activation and CD8+ T-cell differentiation towards senescence in HIV-1 infection. *PLoS Biol*. 2004;2(2):E20. Available at: https://www.ncbi.nlm.nih.gov/pubmed/14966528.
- 23. Liu JC, Leung JM, Ngan DA, et al. Absolute leukocyte telomere length in HIV-infected and uninfected individuals: evidence of accelerated cell senescence in HIV-associated chronic

- obstructive pulmonary disease. *PLoS One*. 2015;10(4):e0124426. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25885433.
- 24. Zanet DL, Thorne A, Singer J, et al. Association between short leukocyte telomere length and HIV infection in a cohort study: No evidence of a relationship with antiretroviral therapy. *Clin Infect Dis.* 2014;58(9):1322-1332. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24457340.
- 25. Lee SA, Sinclair E, Hatano H, et al. Impact of HIV on CD8+ T cell CD57 expression is distinct from that of CMV and aging. *PLoS One*. 2014;9(2):e89444. Available at: https://www.ncbi.nlm.nih.gov/pubmed/24586783.
- 26. Freeman ML, Mudd JC, Shive CL, et al. CD8 T-Cell Expansion and Inflammation Linked to CMV Coinfection in ART-treated HIV Infection. *Clin Infect Dis*. 2016;62(3):392-396. Available at: https://www.ncbi.nlm.nih.gov/pubmed/26400999.
- 27. Schouten J, Wit FW, Stolte IG, et al. Cross-sectional comparison of the prevalence of age-associated comorbidities and their risk factors between HIV-infected and uninfected individuals: the AGEhIV cohort study. *Clin Infect Dis.* 2014;59(12):1787-1797. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25182245.
- 28. Althoff KN, McGinnis KA, Wyatt CM, et al. Comparison of risk and age at diagnosis of myocardial infarction, end-stage renal disease, and non-AIDS-defining cancer in HIV-infected versus uninfected adults. *Clin Infect Dis.* 2015;60(4):627-638. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25362204.
- 29. Rasmussen LD, May MT, Kronborg G, et al. Time trends for risk of severe age-related diseases in individuals with and without HIV infection in Denmark: a nationwide population-based cohort study. *Lancet HIV*. 2015;2(7):e288-298. Available at: http://www.ncbi.nlm.nih.gov/pubmed/26423253.
- 30. Schoenbaum EE, Hartel D, Lo Y, et al. HIV infection, drug use, and onset of natural menopause. *Clin Infect Dis.* 2005;41(10):1517-1524. Available at: https://www.ncbi.nlm.nih.gov/pubmed/16231267.
- 31. Imai K, Sutton MY, Mdodo R, Del Rio C. HIV and menopause: a systematic review of the effects of HIV infection on age at menopause and the effects of menopause on response to antiretroviral therapy. *Obstet Gynecol Int.* 2013;2013:340309. Available at: https://www.ncbi.nlm.nih.gov/pubmed/24454386.
- 32. Althoff KN, Jacobson LP, Cranston RD, et al. Age, comorbidities, and AIDS predict a frailty phenotype in men who have sex with men. *J Gerontol A Biol Sci Med Sci*. 2014;69(2):189-198. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24127428.
- 33. Retornaz F, Petit N, Darque A, et al. Frailty phenotype in older people living with HIV: concepts, prevention and issues. *Geriatr Psychol Neuropsychiatr Vieil*. 2019;17(2):123-128. Available at: https://www.ncbi.nlm.nih.gov/pubmed/31010801.
- 34. Sharma A, Shi Q, Hoover DR, et al. Frailty predicts fractures among women with and at-risk for HIV. *AIDS*. 2019;33(3):455-463. Available at:

- https://www.ncbi.nlm.nih.gov/pubmed/30702514.
- 35. Erlandson KM, Karris MY. HIV and aging: reconsidering the approach to management of comorbidities. *Infect Dis Clin North Am.* 2019;33(3):769-786. Available at: https://www.ncbi.nlm.nih.gov/pubmed/31395144.
- 36. Kelly SG, Wu K, Tassiopoulos K, Erlandson KM, Koletar SL, Palella FJ. Frailty is an independent risk factor for mortality, cardiovascular disease, bone disease, and diabetes among aging adults with human immunodeficiency virus. *Clin Infect Dis*. 2019;69(8):1370-1376. Available at: https://www.ncbi.nlm.nih.gov/pubmed/30590451.
- 37. Sharma A, Hoover DR, Shi Q, et al. Frailty as a predictor of falls in HIV-infected and uninfected women. *Antivir Ther*. 2019;24(1):51-61. Available at: https://www.ncbi.nlm.nih.gov/pubmed/30604692.
- 38. Womack JA, Goulet JL, Gibert C, et al. Physiologic frailty and fragility fracture in HIV-infected male veterans. *Clin Infect Dis.* 2013;56(10):1498-1504. Available at: https://www.ncbi.nlm.nih.gov/pubmed/23378285.
- 39. Tassiopoulos K, Abdo M, Wu K, et al. Frailty is strongly associated with increased risk of recurrent falls among older HIV-infected adults. *AIDS*. 2017;31(16):2287-2294. Available at: https://www.ncbi.nlm.nih.gov/pubmed/28991026.
- 40. Blanco JR, Barrio I, Ramalle-Gomara E, et al. Gender differences for frailty in HIV-infected patients on stable antiretroviral therapy and with an undetectable viral load. *PLoS One*. 2019;14(5):e0215764. Available at: https://www.ncbi.nlm.nih.gov/pubmed/31071105.
- 41. Brothers TD, Kirkland S, Theou O, et al. Predictors of transitions in frailty severity and mortality among people aging with HIV. *PLoS One*. 2017;12(10):e0185352. Available at: https://www.ncbi.nlm.nih.gov/pubmed/28981535.
- 42. Akgun KM, Tate JP, Crothers K, et al. An adapted frailty-related phenotype and the VACS index as predictors of hospitalization and mortality in HIV-infected and uninfected individuals. *J Acquir Immune Defic Syndr*. 2014;67(4):397-404. Available at: https://www.ncbi.nlm.nih.gov/pubmed/25202921.
- 43. Morgello S, Gensler G, Sherman S, et al. Frailty in medically complex individuals with chronic HIV. *AIDS*. 2019;33(10):1603-1611. Available at: https://www.ncbi.nlm.nih.gov/pubmed/31305330.
- 44. Yin M, Dobkin J, Brudney K, et al. Bone mass and mineral metabolism in HIV+ postmenopausal women. *Osteoporos Int.* 2005;16(11):1345-1352. Available at: https://www.ncbi.nlm.nih.gov/pubmed/15754081.
- 45. Brown TT, Qaqish RB. Response to Berg et al. Antiretroviral therapy and the prevalence of osteopenia and osteoporosis: a meta-analytic review. *AIDS*. 2007;21(13):1830-1831. Available at: https://www.ncbi.nlm.nih.gov/pubmed/17690589.
- 46. Grant PM, Kitch D, McComsey GA, et al. Low baseline CD4+ count is associated with greater bone mineral density loss after antiretroviral therapy initiation. *Clin Infect Dis*.

- 2013;57(10):1483-1488. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23943825.
- 47. Stirrup OT, Copas AJ, Phillips AN, et al. Predictors of CD4 cell recovery following initiation of antiretroviral therapy among HIV-1 positive patients with well-estimated dates of seroconversion. *HIV Med*. 2018;19(3):184-194. Available at: https://www.ncbi.nlm.nih.gov/pubmed/29230953.
- 48. Croxford S, Kitching A, Desai S, et al. Mortality and causes of death in people diagnosed with HIV in the era of highly active antiretroviral therapy compared with the general population: an analysis of a national observational cohort. *Lancet Public Health*. 2017;2(1):e35-e46. Available at: https://www.ncbi.nlm.nih.gov/pubmed/29249478.
- 49. Edwards JK, Cole SR, Westreich D, et al. Age at entry into care, timing of antiretroviral therapy initiation, and 10-year mortality among HIV-seropositive adults in the United States. *Clin Infect Dis.* 2015;61(7):1189-1195. Available at: http://www.ncbi.nlm.nih.gov/pubmed/26082505.
- 50. Lodi S, Costagliola D, Sabin C, et al. Effect of immediate initiation of antiretroviral treatment in HIV-positive individuals aged 50 years or older. *J Acquir Immune Defic Syndr*. 2017;76(3):311-318. Available at: https://www.ncbi.nlm.nih.gov/pubmed/28746165.
- 51. Molina JM, Grund B, Gordin F, et al. Which HIV-infected adults with high CD4 T-cell counts benefit most from immediate initiation of antiretroviral therapy? A post-hoc subgroup analysis of the START trial. *Lancet HIV*. 2018;5(4):e172-e180. Available at: https://www.ncbi.nlm.nih.gov/pubmed/29352723.
- 52. Stellbrink HJ, Orkin C, Arribas JR, et al. Comparison of changes in bone density and turnover with abacavir-lamivudine versus tenofovir-emtricitabine in HIV-infected adults: 48-week results from the ASSERT study. *Clin Infect Dis.* 2010;51(8):963-972. Available at: https://www.ncbi.nlm.nih.gov/pubmed/20828304.
- 53. Martin A, Bloch M, Amin J, et al. Simplification of antiretroviral therapy with tenofoviremtricitabine or abacavir-lamivudine: a randomized, 96-week trial. *Clin Infect Dis*. 2009;49(10):1591-1601. Available at: https://www.ncbi.nlm.nih.gov/pubmed/19842973.
- 54. Duvivier C, Kolta S, Assoumou L, et al. Greater decrease in bone mineral density with protease inhibitor regimens compared with nonnucleoside reverse transcriptase inhibitor regimens in HIV-1 infected naive patients. *AIDS*. 2009;23(7):817-824. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19363330.
- 55. Brown TT, Moser C, Currier JS, et al. Changes in bone mineral density after initiation of antiretroviral treatment with tenofovir disoproxil fumarate/emtricitabine plus atazanavir/ritonavir, darunavir/ritonavir, or raltegravir. *J Infect Dis*. 2015;212(8):1241-1249. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25948863.
- 56. Horberg MA, Hurley LB, Klein DB, et al. The HIV care cascade measured over time and by age, sex, and race in a large national integrated care system. *AIDS Patient Care STDS*. 2015;29(11):582-590. Available at: http://www.ncbi.nlm.nih.gov/pubmed/26505968.
- 57. Althoff KN, Justice AC, Gange SJ, et al. Virologic and immunologic response to HAART,

- by age and regimen class. *AIDS*. 2010;24(16):2469-2479. Available at: http://www.ncbi.nlm.nih.gov/pubmed/20829678.
- 58. Bosch RJ, Bennett K, Collier AC, Zackin R, Benson CA. Pretreatment factors associated with 3-year (144-week) virologic and immunologic responses to potent antiretroviral therapy. *J Acquir Immune Defic Syndr*. 2007;44(3):268-277. Available at: https://www.ncbi.nlm.nih.gov/pubmed/17146370.
- 59. Nogueras M, Navarro G, Anton E, et al. Epidemiological and clinical features, response to HAART, and survival in HIV-infected patients diagnosed at the age of 50 or more. *BMC Infect Dis.* 2006;6:159. Available at: https://www.ncbi.nlm.nih.gov/pubmed/17087819.
- 60. Sitar DS. Aging issues in drug disposition and efficacy. *Proc West Pharmacol Soc.* 2007;50:16-20. Available at: https://www.ncbi.nlm.nih.gov/pubmed/18605223.
- 61. Gimeno-Gracia M, Crusells-Canales MJ, Armesto-Gomez FJ, Compaired-Turlan V, Rabanaque-Hernandez MJ. Polypharmacy in older adults with human immunodeficiency virus infection compared with the general population. *Clin Interv Aging*. 2016;11:1149-1157. Available at: https://www.ncbi.nlm.nih.gov/pubmed/27616883.
- 62. Ware D, Palella FJ, Jr., Chew KW, et al. Prevalence and trends of polypharmacy among HIV-positive and -negative men in the Multicenter AIDS Cohort Study from 2004 to 2016. *PLoS One*. 2018;13(9):e0203890. Available at: https://www.ncbi.nlm.nih.gov/pubmed/30204807.
- 63. Halloran MO, Boyle C, Kehoe B, et al. Polypharmacy and drug-drug interactions in older and younger people living with HIV: the POPPY study. *Antivir Ther*. 2019;24(3):193-201. Available at: https://www.ncbi.nlm.nih.gov/pubmed/30700636.
- 64. Cuzin L, Katlama C, Cotte L, et al. Ageing with HIV: do comorbidities and polymedication drive treatment optimization? *HIV Med.* 2017;18(6):395-401. Available at: https://www.ncbi.nlm.nih.gov/pubmed/28858437.
- 65. Guaraldi G, Malagoli A, Calcagno A, et al. The increasing burden and complexity of multimorbidity and polypharmacy in geriatric HIV patients: a cross sectional study of people aged 65 74 years and more than 75 years. *BMC Geriatr*. 2018;18(1):99. Available at: https://www.ncbi.nlm.nih.gov/pubmed/29678160.
- 66. Steinman MA, Hanlon JT. Managing medications in clinically complex elders: "There's got to be a happy medium". *JAMA*. 2010;304(14):1592-1601. Available at: https://www.ncbi.nlm.nih.gov/pubmed/20940385.
- 67. Marzolini C, Back D, Weber R, et al. Ageing with HIV: medication use and risk for potential drug-drug interactions. *J Antimicrob Chemother*. 2011;66(9):2107-2111. Available at: https://www.ncbi.nlm.nih.gov/pubmed/21680580.
- 68. Holtzman C, Armon C, Tedaldi E, et al. Polypharmacy and risk of antiretroviral drug interactions among the aging HIV-infected population. *J Gen Intern Med.* 2013;28(10):1302-1310. Available at: https://www.ncbi.nlm.nih.gov/pubmed/23605401.

- 69. Bastida C, Grau A, Marquez M, et al. Polypharmacy and potential drug-drug interactions in an HIV-infected elderly population. *Farm Hosp*. 2017;41(5):618-624. Available at: https://www.ncbi.nlm.nih.gov/pubmed/28847251.
- 70. Demessine L, Peyro-Saint-Paul L, Gardner EM, Ghosn J, Parienti JJ. Risk and cost associated with drug-drug interactions among aging HIV patients receiving combined antiretroviral therapy in France. *Open Forum Infect Dis.* 2019;6(3):ofz051. Available at: https://www.ncbi.nlm.nih.gov/pubmed/30949521.
- 71. Gellad WF, Grenard JL, Marcum ZA. A systematic review of barriers to medication adherence in the elderly: looking beyond cost and regimen complexity. *Am J Geriatr Pharmacother*. 2011;9(1):11-23. Available at: https://www.ncbi.nlm.nih.gov/pubmed/21459305.
- 72. Wellons MF, Sanders L, Edwards LJ, Bartlett JA, Heald AE, Schmader KE. HIV infection: treatment outcomes in older and younger adults. *J Am Geriatr Soc.* 2002;50(4):603-607. Available at: https://www.ncbi.nlm.nih.gov/pubmed/11982658.
- 73. Wutoh AK, Elekwachi O, Clarke-Tasker V, Daftary M, Powell NJ, Campusano G. Assessment and predictors of antiretroviral adherence in older HIV-infected patients. *J Acquir Immune Defic Syndr*. 2003;33 Suppl 2:S106-114. Available at: https://www.ncbi.nlm.nih.gov/pubmed/12853859.
- 74. Silverberg MJ, Leyden W, Horberg MA, DeLorenze GN, Klein D, Quesenberry CP, Jr. Older age and the response to and tolerability of antiretroviral therapy. *Arch Intern Med*. 2007;167(7):684-691. Available at: https://www.ncbi.nlm.nih.gov/pubmed/17420427.
- 75. Duff PK, Money DM, Ogilvie GS, et al. Severe menopausal symptoms associated with reduced adherence to antiretroviral therapy among perimenopausal and menopausal women living with HIV in Metro Vancouver. *Menopause*. 2018;25(5):531-537. Available at: https://www.ncbi.nlm.nih.gov/pubmed/29206769.
- 76. Brown TT, Hoy J, Borderi M, et al. Recommendations for evaluation and management of bone disease in HIV. *Clin Infect Dis*. 2015;60(8):1242-1251. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25609682.
- 77. Kooij KW, Vogt L, Wit F, et al. Higher prevalence and faster progression of chronic kidney disease in human immunodeficiency virus-infected middle-aged individuals compared with human immunodeficiency virus-uninfected controls. *J Infect Dis.* 2017;216(6):622-631. Available at: https://www.ncbi.nlm.nih.gov/pubmed/28934420.
- 78. Calza L, Sachs M, Colangeli V, et al. Prevalence of chronic kidney disease among HIV-1-infected patients receiving a combination antiretroviral therapy. *Clin Exp Nephrol*. 2019;23(11):1272-1279. Available at: https://www.ncbi.nlm.nih.gov/pubmed/31327092.
- 79. Mocroft A, Lundgren JD, Ross M, et al. Cumulative and current exposure to potentially nephrotoxic antiretrovirals and development of chronic kidney disease in HIV-positive individuals with a normal baseline estimated glomerular filtration rate: a prospective international cohort study. *Lancet HIV*. 2016;3(1):e23-32. Available at: https://www.ncbi.nlm.nih.gov/pubmed/26762990.

- 80. Selwyn PA. Chapter 75: Palliative care in HIV/AIDS. In: S Berger AM, JL, Von Roenn JH, ed. *Principles and Practice of Palliative Care and Supportive Oncology*. 3rd ed. Philadelphia, PA: Lippincott Williams and Wilkins; 2007:833-848.
- 81. Harding R, Simms V, Krakauer E, et al. Quality HIV Care to the End of life. *Clin Infect Dis*. 2011;52(4):553-554; author reply 554. Available at: https://www.ncbi.nlm.nih.gov/pubmed/21258107.
- 82. Justice AC. HIV and aging: time for a new paradigm. *Curr HIV/AIDS Rep.* 2010;7(2):69-76. Available at: https://www.ncbi.nlm.nih.gov/pubmed/20425560.
- 83. Palella FJ, Jr., Baker RK, Moorman AC, et al. Mortality in the highly active antiretroviral therapy era: changing causes of death and disease in the HIV outpatient study. *J Acquir Immune Defic Syndr*. 2006;43(1):27-34. Available at: https://www.ncbi.nlm.nih.gov/pubmed/16878047.
- 84. Smit C, Geskus R, Walker S, et al. Effective therapy has altered the spectrum of cause-specific mortality following HIV seroconversion. *AIDS*. 2006;20(5):741-749. Available at: https://www.ncbi.nlm.nih.gov/pubmed/16514305.
- 85. Althoff KN, Gebo KA, Moore RD, et al. Contributions of traditional and HIV-related risk factors on non-AIDS-defining cancer, myocardial infarction, and end-stage liver and renal diseases in adults with HIV in the USA and Canada: a collaboration of cohort studies. *Lancet HIV*. 2019;6(2):e93-e104. Available at: https://www.ncbi.nlm.nih.gov/pubmed/30683625.
- 86. Kochanek KD, Xu J, Murphy SL, Minino AM, King HC. Deaths: preliminary data for 2009. *Natl Vital Stat Rep.* 2011;59(4):1-51. Available at: https://www.cdc.gov/nchs/data/nvsr/nvsr59/nvsr59 04.pdf.
- 87. Mdodo R, Frazier EL, Dube SR, et al. Cigarette smoking prevalence among adults with HIV compared with the general adult population in the United States: cross-sectional surveys. *Ann Intern Med.* 2015;162(5):335-344. Available at: https://www.ncbi.nlm.nih.gov/pubmed/25732274.
- 88. Reddy KP, Parker RA, Losina E, et al. Impact of cigarette smoking and smoking cessation on life expectancy among people with HIV: a US-based modeling study. *J Infect Dis*. 2016;214(11):1672-1681. Available at: https://www.ncbi.nlm.nih.gov/pubmed/27815384.
- 89. Wong C, Gange SJ, Moore RD, et al. Multimorbidity among persons living with human immunodeficiency virus in the United States. *Clin Infect Dis.* 2018;66(8):1230-1238. Available at: https://www.ncbi.nlm.nih.gov/pubmed/29149237.
- 90. Guaraldi G, Orlando G, Zona S, et al. Premature age-related comorbidities among HIV-infected persons compared with the general population. *Clin Infect Dis.* 2011;53(11):1120-1126. Available at: https://www.ncbi.nlm.nih.gov/pubmed/21998278.
- 91. Capeau J. Premature Aging and Premature Age-Related Comorbidities in HIV-Infected Patients: Facts and Hypotheses. *Clin Infect Dis.* 2011;53(11):1127-1129. Available at: https://www.ncbi.nlm.nih.gov/pubmed/21998279.

- 92. Hasse B, Ledergerber B, Furrer H, et al. Morbidity and aging in HIV-infected persons: the Swiss HIV cohort study. *Clin Infect Dis.* 2011;53(11):1130-1139. Available at: https://www.ncbi.nlm.nih.gov/pubmed/21998280.
- 93. American Academy of HIV Medicine. The HIV and Aging Consensus Project: recommended treatment strategies for clinicians managing older patients with HIV. 2011. Available at: https://aahivm.org/wp-content/uploads/2017/02/Aging-report-working-document-FINAL-12.1.pdf.
- 94. Aberg JA, Gallant JE, Ghanem KG, Emmanuel P, Zingman BS, Horberg MA. Primary care guidelines for the management of persons infected with HIV: 2013 update by the HIV Medicine Association of the Infectious Diseases Society of America. *Clin Infect Dis*. 2014;58(1):e1-34. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24235263.
- 95. Lucas GM, Ross MJ, Stock PG, et al. Clinical practice guideline for the management of chronic kidney disease in patients infected with HIV: 2014 update by the HIV Medicine Association of the Infectious Diseases Society of America. *Clin Infect Dis.* 2014;59(9):e96-138. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25234519.
- 96. Feinstein MJ, Hsue PY, Benjamin LA, et al. Characteristics, prevention, and management of cardiovascular disease in people living with HIV: a scientific statement from the American Heart Association. *Circulation*. 2019;140(2):e98-e124. Available at: https://www.ncbi.nlm.nih.gov/pubmed/31154814.
- 97. Davies MJ, D'Alessio DA, Fradkin J, et al. Management of hyperglycemia in type 2 diabetes, 2018. A Consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). *Diabetes Care*. 2018;41(12):2669-2701. Available at: https://www.ncbi.nlm.nih.gov/pubmed/30291106.
- 98. Grundy SM, Stone NJ, Bailey AL, et al. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ ADA/AGS/APhA/ASPC/NLA/PCNA Guideline on the Management of Blood Cholesterol: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. *J Am Coll Cardiol*. 2018(18):39033-39038. Available at: http://www.onlinejacc.org/content/accj/early/2018/11/02/j.jacc.2018.11.003.full.pdf.
- 99. Triant VA, Perez J, Regan S, et al. Cardiovascular risk prediction functions underestimate risk in HIV infection. *Circulation*. 2018;137(21):2203-2214. Available at: https://www.ncbi.nlm.nih.gov/pubmed/29444987.
- 100. Heaton RK, Clifford DB, Franklin DR, Jr., et al. HIV-associated neurocognitive disorders persist in the era of potent antiretroviral therapy: CHARTER Study. *Neurology*. 2010;75(23):2087-2096. Available at: https://www.ncbi.nlm.nih.gov/pubmed/21135382.
- 101. Saloner R, Heaton RK, Campbell LM, et al. Effects of comorbidity burden and age on brain integrity in HIV. *AIDS*. 2019;33(7):1175-1185. Available at: https://www.ncbi.nlm.nih.gov/pubmed/30870195.
- 102. Canizares S, Cherner M, Ellis RJ. HIV and aging: effects on the central nervous system. *Semin Neurol*. 2014;34(1):27-34. Available at: https://www.ncbi.nlm.nih.gov/pubmed/24715486.

- 103. Vance DE, Wadley VG, Crowe MG, Raper JL, Ball KK. Cognitive and everyday functioning in older and younger adults with and without HIV. *Clin Gerontol*. 2011;34(5):413-426. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22563140.
- 104. Goodkin K, Miller EN, Cox C, et al. Effect of ageing on neurocognitive function by stage of HIV infection: evidence from the Multicenter AIDS Cohort Study. *Lancet HIV*. 2017;4(9):e411-e422. Available at: https://www.ncbi.nlm.nih.gov/pubmed/28716545.
- 105. Rubin LH, Springer G, Martin EM, et al. Elevated depressive symptoms are a stronger predictor of executive dysfunction in HIV-infected women than in men. *J Acquir Immune Defic Syndr*. 2019;81(3):274-283. Available at: https://www.ncbi.nlm.nih.gov/pubmed/30893126.
- 106. Mukerji SS, Locascio JJ, Misra V, et al. Lipid profiles and APOE4 allele impact midlife cognitive decline in HIV-infected men on antiretroviral therapy. *Clin Infect Dis*. 2016;63(8):1130-1139. Available at: https://www.ncbi.nlm.nih.gov/pubmed/27448678.
- 107. Hellmuth J, Milanini B, Valcour V. Interactions between ageing and NeuroAIDS. *Curr Opin HIV AIDS*. 2014;9(6):527-532. Available at: https://www.ncbi.nlm.nih.gov/pubmed/25203641.
- 108. Sundermann EE, Erlandson KM, Pope CN, et al. Current challenges and solutions in research and clinical care of older persons living with HIV: findings presented at the 9th International Workshop on HIV and Aging. *AIDS Res Hum Retroviruses*. 2019. Available at: https://www.ncbi.nlm.nih.gov/pubmed/31373216.
- 109. Milanini B, Valcour V. Differentiating HIV-associated neurocognitive disorders from Alzheimer's disease: an emerging issue in geriatric NeuroHIV. *Curr HIV/AIDS Rep.* 2017;14(4):123-132. Available at: https://www.ncbi.nlm.nih.gov/pubmed/28779301.
- 110. Jacks A, Wainwright DA, Salazar L, et al. Neurocognitive deficits increase risk of poor retention in care among older adults with newly diagnosed HIV infection. *AIDS*. 2015;29(13):1711-1714. Available at: http://www.ncbi.nlm.nih.gov/pubmed/26372282.
- 111. Kamal S, Locatelli I, Wandeler G, et al. The presence of human immunodeficiency virus-associated neurocognitive disorders is associated with a lower adherence to combined antiretroviral treatment. *Open Forum Infect Dis.* 2017;4(2):ofx070. Available at: https://www.ncbi.nlm.nih.gov/pubmed/28584853.
- 112. Patel S, Parikh NU, Aalinkeel R, et al. United States national trends in mortality, length of stay (LOS) and associated costs of cognitive impairment in HIV population from 2005 to 2014. *AIDS Behav*. 2018;22(10):3198-3208. Available at: https://www.ncbi.nlm.nih.gov/pubmed/29705930.
- 113. Valcour V, Paul R, Chiao S, Wendelken LA, Miller B. Screening for cognitive impairment in human immunodeficiency virus. *Clin Infect Dis.* 2011;53(8):836-842. Available at: https://www.ncbi.nlm.nih.gov/pubmed/21921226.
- 114. Milanini B, Catella S, Perkovich B, et al. Psychiatric symptom burden in older people living with HIV with and without cognitive impairment: the UCSF HIV over 60 cohort study. *AIDS*

- Care. 2017;29(9):1178-1185. Available at: https://www.ncbi.nlm.nih.gov/pubmed/28127989.
- 115. Grov C, Golub SA, Parsons JT, Brennan M, Karpiak SE. Loneliness and HIV-related stigma explain depression among older HIV-positive adults. *AIDS Care*. 2010;22(5):630-639. Available at: http://www.ncbi.nlm.nih.gov/pubmed/20401765.
- 116. Kalichman SC, Heckman T, Kochman A, Sikkema K, Bergholte J. Depression and thoughts of suicide among middle-aged and older persons living with HIV-AIDS. *Psychiatr Serv*. 2000;51(7):903-907. Available at: http://www.ncbi.nlm.nih.gov/pubmed/10875956.
- 117. Ruffieux Y, Lemsalu L, Aebi-Popp K, et al. Mortality from suicide among people living with HIV and the general Swiss population: 1988-2017. *J Int AIDS Soc*. 2019;22(8):e25339. Available at: https://www.ncbi.nlm.nih.gov/pubmed/31423727.
- 118. Nanni MG, Caruso R, Mitchell AJ, Meggiolaro E, Grassi L. Depression in HIV infected patients: a review. *Curr Psychiatry Rep.* 2015;17(1):530. Available at: https://www.ncbi.nlm.nih.gov/pubmed/25413636.
- 119. Alexopoulos GS. Depression in the elderly. *Lancet*. 2005;365(9475):1961-1970. Available at: https://www.ncbi.nlm.nih.gov/pubmed/15936426.
- 120. Gallant J, Hsue P, Budd D, Meyer N. Healthcare utilization and direct costs of non-infectious comorbidities in HIV-infected patients in the USA. *Curr Med Res Opin*. 2018;34(1):13-23. Available at: https://www.ncbi.nlm.nih.gov/pubmed/28933204.
- 121. Brennan A, Morley D, O'Leary AC, Bergin CJ, Horgan M. Determinants of HIV outpatient service utilization: a systematic review. *AIDS Behav*. 2015;19(1):104-119. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24907780.
- 122. Erlandson KM, Perez J, Abdo M, et al. Frailty, neurocognitive impairment, or both in predicting poor health outcomes among adults living with human immunodeficiency virus. *Clin Infect Dis.* 2019;68(1):131-138. Available at: https://www.ncbi.nlm.nih.gov/pubmed/29788039.